Maximum of the modulus of kernels in Gauss-Turán quadratures

نویسندگان

  • Gradimir V. Milovanovic
  • Miodrag M. Spalevic
  • Miroslav S. Pranic
چکیده

We study the kernels Kn,s(z) in the remainder terms Rn,s(f) of the Gauss-Turán quadrature formulae for analytic functions on elliptical contours with foci at ±1, when the weight ω is a generalized Chebyshev weight function. For the generalized Chebyshev weight of the first (third) kind, it is shown that the modulus of the kernel |Kn,s(z)| attains its maximum on the real axis (positive real semi-axis) for each n ≥ n0, n0 = n0(ρ, s). It was stated as a conjecture in [Math. Comp. 72 (2003), 1855–1872]. For the generalized Chebyshev weight of the second kind, in the case when the number of the nodes n in the corresponding Gauss-Turán quadrature formula is even, it is shown that the modulus of the kernel attains its maximum on the imaginary axis for each n ≥ n0, n0 = n0(ρ, s). Numerical examples are included.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error estimates for Gauss–Turán quadratures and their Kronrod extensions

We study the kernel Kn,s(z) of the remainder term Rn,s( f ) of Gauss–Turán–Kronrod quadrature rules with respect to one of the generalized Chebyshev weight functions for analytic functions. The location on the elliptic contours where the modulus of the kernel attains its maximum value is investigated. This leads to effective L∞-error bounds of Gauss–Turán–Kronrod quadratures. Following Kronrod,...

متن کامل

On weight functions which admit explicit Gauss-Turán quadrature formulas

The main purpose of this paper is the construction of explicit Gauss-Turán quadrature formulas: they are relative to some classes of weight functions, which have the peculiarity that the corresponding s-orthogonal polynomials, of the same degree, are independent of s. These weights too are introduced and discussed here. Moreover, highest-precision quadratures for evaluating Fourier-Chebyshev co...

متن کامل

Orthogonal Polynomials and Quadrature

Various concepts of orthogonality on the real line are reviewed that arise in connection with quadrature rules. Orthogonality relative to a positive measure and Gauss-type quadrature rules are classical. More recent types of orthogonality include orthogonality relative to a sign-variable measure, which arises in connection with Gauss-Kronrod quadrature, and power (or implicit) orthogonality enc...

متن کامل

Exponential convergence of Gauss-Jacobi quadratures for singular integrals over high dimensional simplices

Galerkin discretizations of integral operators in R d require the evaluation of integrals R S (1) R S (2) f (x, y) dydx where S (1) , S (2) are d-dimensional simplices and f has a singularity at x = y. In [3] we constructed a family of hp-quadrature rules Q N with N function evaluations for a class of integrands f allowing for algebraic singularities at x = y, possibly non-integrable with respe...

متن کامل

High-order Accurate Nyström Discretization of Integral Equations with Weakly Singular Kernels on Smooth Curves in the Plane

Boundary integral equations and Nyström discretization provide a powerful tool for the solution of Laplace and Helmholtz boundary value problems. However, often a weaklysingular kernel arises, in which case specialized quadratures that modify the matrix entries near the diagonal are needed to reach a high accuracy. We describe the construction of four different quadratures which handle logarith...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 77  شماره 

صفحات  -

تاریخ انتشار 2008